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SUMMARY

We have extended the usual notions used in high-resolution methods. Rather than applying a single
principle such as monotonicity or essentially non-oscillatory stencil selection, we hybridize multiple
principles applying them where they are most e�ective. We de�ne methods that blend high-order accu-
racy with essentially non-oscillatory methods when monotonicity conditions are violated. The methods
can be de�ned with a number of variants leading to results with di�ering properties. We also focus on
the impact of the selection of the high-order accurate stencil on the overall method. Published in 2005
by John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are a wide variety of high-resolution numerical methods for hyperbolic conservation
laws. These methods are based on several di�erent operating principles leading to properties
that are advantageous under di�erent conditions. These methods include a wide variety of
methods operating on monotonicity principles such as van Leer’s MUSCL algorithm [1] or
PPM [2]. Other methods are based on choosing the smoothest stencils in some sense. These
are the uniformly and essentially non-oscillatory (ENO) [3, 4]. More recently, the weighted
ENO methods have largely superseded the ENO methods in common use [5]. During the mid-
to late-1990s Huynh and Suresh made progress in combining these two design principles into
a single algorithm [6, 7]. In this paper, we extend their algorithms in terms of accuracy and
overall computational e�ciency.
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Here, we discuss principles by which these di�erent methods can be merged so that they
operate locally in a more optimal fashion. The basic design principle is to use high-order
linear di�erencing locally whenever the e�ective polynomial reconstruction is monotone. If
monotonicity is threatened, then the local data are interrogated to determine whether the �eld
is locally monotone and under-resolved or at an extremum. If the �ow is locally monotone,
but under-resolved, the reconstruction is replaced with either an (weighted) essentially non-
oscillatory stencil or the monotone bounding stencil. Should the local data contain valid
extrema, the smoother local stencil is chosen (either the ENO=WENO or the original high-
order).
We implement the method in two algorithms. One is a piecewise linear method plus

uniformly non-oscillatory (UNO) limiting and the second is piecewise parabolic with ENO=
WENO limiting. When the accuracy per unit CPU time is considered, the methods are shown
to be extremely e�cient as compared to the two classes of methods that the design draws
upon. In this paper, we will focus more of our attention on the PPM variant of our method.

2. ELEMENTS OF METHOD DESIGN AND OPTIMAL METHODS

In this section of the paper, we discuss the degrees of freedom we will exercise in de�ning
our methods. This includes the base high-order stencil, the low-order (dissipative) stencil and
a non-oscillatory method. These methods are woven together via a hybridization that builds
upon concepts originally introduced in high-resolution methods by Boris [8] and van Leer
[9]. Our operating principle is to use the high-order stencil as much as possible, but employ
(weighted) essentially non-oscillatory di�erencing if the high-order stencil violates conditions
for monotonicity. Our ultimate selection is based upon which stencil is bounded by the other
two available choices.

2.1. Base PPM algorithm

The PPM algorithm that we use di�ers from those in the literature in several important
ways. Our method uses characteristic variables for di�erencing in both time and space in a
manner that is otherwise equivalent to the direct Eulerian (PPMDE) version of the method.
The key steps are given here for clarity. To begin the spatial di�erencing we transform
the variables into characteristic variables using wk =Lj(Uj)Uk , which is the projection of
conserved variables on to characteristic variables using the left eigenvector evaluated in the
jth zone. This transformation is made locally with a stencil wide enough to evaluate the
polynomial reconstruction in the jth zone.
Once the variables wk are available, the edge values wj±1=2, for a zone are reconstructed us-

ing some high-order approximation. Part of this work will replace the standard approximation
with some higher order ones. From these values and the cell average quantity, wj, a unique
parabola can be determined, p(�)=p0 +p1�+p2�2, where �=(x − xj)=�x and p0 = 3

2wj −
(wj−1=2 +wj+1=2)=4, p1 =wj+1=2−wj−1=2, and p2 = 3(wj−1=2 +wj+1=2)−6wj. This polynomial is
examined for monotonicity using the following conditions. wj±1=2 :=median(wj;wj±1=2;wj±1),
wj±1=2 :=median(wj;wj±1=2; 3wj − 2wj∓1=2), where := means replace, and the median function
returns the argument bounded by the other two. It is this step of the method that is replaced
with our more elaborate step.
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This is followed by a time-centreing which can be expressed by −1=� ∫ 1=2−�
1=2 p(�) d�

and −1=� ∫ −1=2−�
−1=2 p(�) d�. This evaluates to wn+1=2j+1=2 =p(

1
2 ) − �=2p1 + (−�=2 + �2=3)p2 and

wn+1=2j−1=2 =p(− 1
2 ) − �=2p1 + (�=2 + �2=3)p2 with �= ��t=�x, where � is the eigenvalue asso-

ciated with the characteristic �eld w. Then the variables are transformed back to the original
variables, Un+1=2j±1=2 =R(Uj)w

n+1=2
j±1=2, where R is the right eigenvector. The algorithm proceeds with

advancing the equations through a conservative update. This will involve a Riemann solution
as the edge variables are double-valued.

2.2. High-order method

Typically, the high-order method used in high-resolution methods is second-order accurate.
While the usual monotonicity-preserving (i.e., TVD) method is limited to second-order accu-
racy, the use of higher than second-order accurate stencils can be shown to improve method
e�ciency. The high-order stencils can take numerous forms, which are usually based on cen-
tred or upwind biased stencils. This approach is e�ective; however, we will explore stencils
that are anti-dissipative, and optimal stencils that seek to minimize numerical error over some
band of Fourier modes [10].
The anti-dissipative stencils can be derived through the use of the derivative of the primitive

function polynomial [2, 3]. This approach can be used with a piecewise parabolic method
(PPM) using the slope and curvature obtained from the second and third derivatives of the
polynomial giving edge values used in the parabolic interpolation using sixth-order slopes and
curvatures

wj−1=2 =
−111wj+1 + 887wj+2 − 3010wj+1 + 8510wj + 6445wj−1 − 1349wj−2 + 148wj−3

11 520

and

wj+1=2 =
−111wj−1 + 887wj−2 − 3010wj−1 + 8510wj + 6445wj+1 − 1349wj+2 + 148wj+3

11 520

The parabolic interpolation is de�ned by these two points and the parabola that preserves the
cell average value, wj.
Optimal edge values can be derived to minimize errors over a waveband in Fourier space.

We seek methods with high �delity at large wavenumbers, therefore, we will optimize over
the range, [0; 3�=4]. The method is also constrained to some speci�ed order-of-accuracy. This
procedure can be easily implemented using symbolic algebra software such as Mathematica.
Following this path for the edge values for PPM gives

wj+1=2 = 0:6810564693289125(wj + wj+1)− 0:22991803732670166(wj+2 − wj−1)
+0:0488615679977887(wj+3 − wj−2)

The edge wj−1=2 is identical with an index shift of −1.
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For the primitive variable derived slopes, the method becomes mildly anti-dissipative for
CFL numbers away from zero and one and for low wavenumbers. The use of the monotonicity
preserving limiters overcomes this weak instability in all calculations. The optimal slope
minimizes the error at the higher wavenumbers at the cost of somewhat larger errors at
small wavenumbers.
For PPM the higher order edge values improve the phase error while leaving the leading

order dissipation unchanged. The parabolic primitive function edge values reduce both the
amplitude and the phase error.

2.3. Low-order method and dissipation

While there is a large degree of latitude with low-order methods, we will use a single method
here. This will be a �rst-order Godunov method with an iterative Riemann solver that re-
constructs the rarefaction as a linear function in similarity space. This method is a slightly
simpli�ed version of that used by Rider [11]. This Riemann solver provides an e�ective and
robust method for strong shocks and is free from many common pathologies a�icting many
linearized Riemann solvers.

2.4. Non-oscillatory methods

Other important elements of our methods are ENO methods. Used alone, these methods are
e�ective shock capturing techniques although they tend to be rather dissipative compared with
methods such as MUSCL [12]. The method works e�ectively by choosing the smoothest local
stencil for the di�erencing. For our purposes, this character may well be an advantage because
of the relative safety in dissipative algorithms. We also use a weighted version of UNO method
introduced recently in Reference [13]. The UNO or WUNO di�erencing is used in conjunction
with the piecewise linear method. The ENO or WENO method is applied to determine edge
values that are used to de�ne a piecewise parabolic method. In our implementation of the
ENO method, the stencils are precomputed and then hierarchically chosen, w1j+1=2 =wj

w2j+1=2 =
wj + wj+1

2
;
3wj − wj−1

2

and

w3j+1=2 =
2wj−2 − 7wj−1 + 11wj

6
;
−wj−1 + 5wj + 2wj+1

6
;
2wj + 5wj+1 − wj+2

6

These are chosen on the basis of the stencil that has the smallest di�erence between it and
the lower order edge value.
As described next, the ENO method is only used when the base high-order method is not

monotone.

2.5. Method hybridization

High-resolution methods have usually utilized the hybridization of low-order monotone meth-
ods with high-order (non-monotone) schemes. Here, we apply principles in which we merge
the monotone high-resolution methods with W(ENO) methods [13]. Our principle is the fol-
lowing: use the high-order approximation as much as possible. If the high-order approximation
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produces a potential violation of monotonicity, then select the approximation that is bounded
by two of the estimates provided by the monotonicity limit, the high-order approximation,
and an essentially non-oscillatory approximation.
One can then compose all aspects of these elements to produce optimal methods. These

methods combine the robustness of monotone methods without reducing the accuracy to
�rst order at extrema and discontinuities. This is accomplished by utilizing the W(UNO)
or W(ENO) methodology when monotonicity is violated, in order to test whether higher ac-
curacy is still a viable and nonlinearly stable approximation. The �rst-order approach is only
used as a last resort when the �ow is grossly under-resolved and high-order stencils of any
sort are not viable. As the next section will clearly demonstrate, this approach yields great
improvements in solution accuracy and method e�ciency.
To summarize, the algorithm used to select the di�erencing has the following steps:

1. Start with a high-order di�erence approximation;
2. Check whether this approximation is monotone preserving;
3. If it is monotone, use the high-order approximation;
4. Form a UNO or ENO approximation as appropriate for the method;
5. The new monotone limit is based on the ENO method for PPM;
6. From the triple (high-order, monotone limit, and ENO or UNO) use the value that
is bounded by the other two (the median); in the simplest case, this is accomplished
by wj±1=2 :=median(wMj±1=2; wj±1=2; w

ENO
j±1=2). We note that the median function has the

following property, i.e. two entries are O(hn) and O(hm), where m6n and then the
function returns a O(hm) value.

3. RESULTS

We show results for several cases: Sod’s shock tube, the interacting blast wave problem and
the Shu–Osher entropy wave. These results are shown in Table I. In each case, the new
methods xPPM are more accurate than either of the monotone methods (cPPM or WENO5).
The ultimate arbiter of the solution quality is the e�ciency of a method, which compares
the amount of e�ort for a method to achieve comparable errors. The new methods can
be as much as three times the e�ciency of the monotone methods, but much more e�-
cient than the classical WENO method. This is greatly impacted by the convergence rate,
which is observed to be about 0.8. This convergence rate is expected for a problem with a
discontinuity [14].
We have also examined a simple steepening Riemann invariant to understand the details of

the dissipation and resolution of the algorithm. Prior to the formation of a shock, the PPM
method produces third-order solutions when the CFL number is near one, but higher order
solutions de�ned by the order of the estimate of the edge values as the CFL number goes to
zero. The new methods commit far lower errors in the spectrum of solution and produces far
smaller unphysical side-e�ects at longer wavelengths. In three dimensions, we have compared
solutions for the Taylor–Green vortex. Here we have found that these methods produce errors
comparable to �fth-order WENO with 100–1000 times less computational e�ort. Our present
implementation uses dimensional splitting, but nothing precludes applying these concepts in
a more genuinely multidimensional fashion.
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Table I. The relative accuracy, cost and e�ciency of a set of modern algorithms
for the 1D test problems.

Scheme Sod’ shock tube Interacting blast waves Shu–Osher entropy wave

sPLM2 1.00=1.00=1.00 1.00=1.00=1.00 1.00=1.00=1.00
cPPM6 0.70=1.41=0.58 0.63=1.36=0.44 0.78=1.42=0.75
xENO-PPM6 0.72=1.51=0.67 0.57=1.43/0.35 0.71=1.41=0.60
xENO-PPM7 0.70=1.48=0.60 0.56=1.45=0.34 0.69=1.43=0.57
xENO-PPM7p 0.66=1.47=0.53 0.36=1.47=0.12 0.79=1.56=0.86
xENO-PPM6o 0.53=1.71=0.35 0.45=1.52=0.21 1.32=1.43=2.87
xWENO-PPM6 0.71=1.59=0.67 0.58=1.43=0.37 0.77=1.43=0.75
xWENO-PPM7 0.69=1.62=0.63 0.65=1.43=0.48 0.78=1.45=0.78
xWENO-PPM7p 0.65=1.68=0.58 0.62=1.48=0.45 0.78=1.50=0.80
xWENO-PPM6o 0.64=1.60=0.54 0.47=1.39=0.21 0.84=1.48=0.95
WENO5 1.44=9.22=23.09 0.96=6.16=5.59 0.76=8.77=4.47

These are reported in triples (accuracy=cost=e�ciency), where the e�ciency is computed as cost(error)d=n, where
d is the dimension (1, 2 or 3) and n is the convergence rate. sPLM=simple PLM, cPPM=characteristic
PPM, xENO-PPM=extreme ENO PPM, xWENO-PPM=extreme WENO PPM, 6= sixth-order di�erence or edge,
7= seventh-order, 7p=7 point parabolic, 6o= six point optimal.
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